STUDIES ON MOLYBDO-OXIDASE MODEL: AN EPR-EVIDENCE FOR A SIMPLE MODEL OF MOLYBDO-OXIDASE Akira NAKAMURA*, Norikazu UEYAMA, and Mikiharu KAMACHI Department of Macromolecular Science, Faculty of Science, Osaka university, Toyonaka, Osaka 560 EPR signals due to monomeric Mo(V) species formed by mild reduction of MoO_2 (cys-OR)₂, R = methyl, ethyl, or benzyl, were observed at 298°K and at 77°K. The EPR parameters of these complexes having catalytic activity for oxidation of triphenyl-phosphine are similar to those of reduced xanthine oxidase. Active sites of molybdo-oxidases, e.g. xanthine oxidase or sulfite oxidase, have been investigated by EPR spectra resulting from the paramagnetism of mononuclear Mo(V) species 1,2 . Recently, EXAFS studies revealed presence of one or two oxo, two or three cysteine thiolates, and one nitrogen or one thioether ligands in xanthine oxidase 3 . Oxo-molybdenum(V) complexes of cysteine have attracted attention for their close connection to the active sites of these enzymes. Binuclear Mo(V) cysteine complex $[\text{Mo}_2\text{O}_4(\text{SCH}_2\text{CH}(\text{NH}_2)\text{CO}_2]^2^-$ is well characterized and the dissociation into mononuclear Mo(V) species has been detected by the EPR spectra at pH 7-10 in water 4 . The isotopically enriched $^{95}\text{Mo}(\text{V})$ -cysteine complex was reported to give the parameters: g_{av} =1.975, A_{av} =0.0054 cm $^{-1}$. However, the extent of this dissociation has been reported to be at best 2% and major species in water remains diamagnetic binuclear ones. Such a complex has no activity as catalyst in air oxidation. Recently, Spence et al 5 synthesized $[\text{Et}_4\text{N}][\text{Mo}^{V}0(\text{C}_6\text{H}_4\text{SNCH}_2\text{CH}_2\text{NSC}_6\text{H}_4)]$, which gives the following EPR parameters: g_x =1.974, g_y =1.977, g_z =2.005, A_z =0.00569 cm $^{-1}$ (for $^{95,97}\text{Mo}$). ${ m MoO}_2({ m S}_2{ m CNEt}_2)_2$ has been found to oxidize tertiary phosphines to give phosphine oxides and ${ m Mo}_2{ m O}_3({ m S}_2{ m CNEt}_2)_4^{6-10}$. Newton 11 proposed a mechanism involving 0-atom transfer to give ${ m Mo}_2{ m IV}_0({ m S}_2{ m CNEt}_2)_2$ which rapidly combines with ${ m MoO}_2({ m S}_2{ m CNEt}_2)_2$. No mononuclear EPR active species is involved. Speier 12 also has speculated the same mechanism for the oxidation of various alkylphosphines by ${ m MoO}_2({ m cys-OEt})_2$. We have obtained evidence for the mononuclear Mo(V) cysteinate alkyl ester complex as a stable abundant solution species, which shows EPR spectra similar to the ones observed for molybdo-oxidase. Figure 1 shows the EPR signals for the reduction species of $MoO_2(\text{cys-OEt})_2$ formed by addition of excess PPh₃ in dimethylformamide(DMF)/water(10:1). The g values, $g_{av}^{=1.972}$, A=0.0033 cm⁻¹(for 95,97 Mo) at 25° observed in our case are similar to the $g_{av}^{=1.977}$, A=0.0034 cm⁻¹(for 95 Mo) for xanthine oxi- dase¹. The result was interpreted to indicate the S,N chelation to the Mo(V) atom. The hyperfine splitting due to 95,97 Mo indicates that the species is mononuclear in solution similar to the Mo-site of the enzyme. The formation of such a paramagnetic Mo(V) species is supported by the ^{13}C NMR spectra in dimethyl sulfoxide-d₆. The carbon peak due to the cysteine CH₂S group disappeared in 5 h and strong EPR signals shown in Fig. 1 appeared. Similar spectroscopic behavior was also observed with MoO₂(cys-OMe)₂ or MoO₂(cys-OBz1)₂. However, no EPR signal was observed upon reduction of MoO₂(S₂CNEt₂)₂ by excess PPh₃ in DMF/water. Mo^V₂O₃(S₂CNEt₂)₄ and/or Mo^{IV}O(S₂CNEt₂)₂ are formed in this case. Thiolate-chelated monomeric Mo(V) species are active in the catalytic air oxidation of PPh_3 in DMF/water 13 and thus important as a model of molybdo-oxidases. Figure 1 EPR spectra of reduced ${\rm MoO}_2({\rm cys-OEt})_2$ in DMF/water. ## References - 1) R. C. Bray and T. C. Swann, Struct. Bonding, 11, 107 (1972). - 2) H. J. Cohen, L. Fridovich, and K. V. Rajagopalan, J. Biol. Chem., 246, 347 (1971). - 3) J. M. Berg, K. O. Hodgson, S. P. Cramer, J. L. Corbin, A. Elsberry, J. Pariyadath, and E. I. Stiefel, J. Am. Chem. Soc., 101, 2774 (1979). - 4) T. J. Huang and G. P. Haight, J. Am. Chem. Soc., <u>92</u>, 2336 (1970). - 5) J. T. Spence, M. Minelli, and P. Kroneck, J. Am. Chem. Soc., <u>102</u>, 4539 (1980). - 6) R. Barral, C. Bocard, I. Seree de Roch, and L. Sajus, Tetrahedron Lett., 1963 (1972). - 7) R. Durant, C. D. Garner, M. R. Hyde, and F. E. Mabbs, J. Chem. Soc., Dalton, 955 (1977). - 8) D. B. McDonald and J. I. Schulman, Analyt. Chem., <u>47</u>, 2023 (1975). - 9) G. J. -J. Chen, J. W. McDonald, and W. E. Newton, Inorg. Chem., <u>15</u>, 2612 (1976). - 10) A. Nakamura, M. Nakayama, K. Sugihashi, and S. Otsuka, Inorg. Chem., 18, 394 (1979). - 11) W. E. Newton, J. L. Corbin, D. C. Bravard, J. E. Searles, and J. W. McDonald, Inorg. Chem., <u>13</u>, 1100 (1974). - 12) G. Speier, Inorg. Chim. Acta, <u>32</u>, 139 (1979). - 13) A. Nakamura and N. Ueyama, "Molybdenum Chemistry of Biological Significance" Eds. W. E. Newton and S. Otsuka, Plenum Publishing Co., New York, 1980. (Received October 6, 1980)